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Group Theory Background

Definition

A set G along with a binary operation + is a group if the following axioms are
satisfied:

For all elements g1, g2, g3 ∈ G we have (g1 + g2) + g3 = g1 + (g2 + g3).

There exists element 0 ∈ G such that for all g ∈ G , g + 0 = 0 + g = g
(this is called the identity of G).

For all elements g ∈ G , there exists element −g ∈ G such that
g + (−g) = (−g) + g = 0. The element −g is called the inverse of g .

Note that in general, groups do not have to be commutative.

Definition

A group G (with +) is abelian if g1 + g2 = g2 + g1 for all g1, g2 ∈ G .
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Group Theory Background

Example

The integers Z along with the operation addition is an abelian group.

The identity of Z is 0.

The inverse of g is −g .

Associativity and commutativity are well known in Z.

Example

The integers modulo n for some n ∈ N (denoted Z/nZ) is an abelian group
along with addition modulo n.

The identity of Z/nZ is 0 + nZ.
The inverse of g + nZ is −g + nZ.
Associativity and commutativity follow from the operation on Z.
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Group Theory Background

Definition

We say that a group is a finite abelian group if it is abelian and it has a finite
number of elements.

Definition

A finite abelian group is a p-group if its number of elements is a power of
prime p.

Definition

The integers modulo n for some n ∈ N with the operation being addition
modulo n (Z/nZ) is called the cyclic group of order n and throughout this
presentation will be denoted by Cn.

Example

The cyclic group of order 5 has elements
{0 + 5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z}.

From now on, each equivalence class modulo n will be denoted by one of its
representatives.
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Group Theory Background

Definition

Given groups G and H, we define the direct sum of G and H, denoted G ⊕ H,
to be the group

{(g , h) | g ∈ G , h ∈ H},

with
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

The operations in each component are done in the group.

Example

The direct sum C2 ⊕ C3 is the set {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
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Group Theory Background

Definition

Let G ,H be groups and consider φ : G → H. The map φ is an isomorphism if
the following conditions hold:

For all g1, g2 ∈ G , φ(g1 + g2) = φ(g1) + φ(g2)

φ is injective and surjective.

If φ is an isomorphism, then we write G ∼= H and say G is isomorphic to H.

Definition

When the domain and codomain of an isomorphism are both the same group,
then we say the isomorphism is an automorphism.
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Group Theory Background

Definition

Let G be a group and let x be an element of G . We define kx for a positive
integer k to be

x + x + · · ·+ x︸ ︷︷ ︸
k times

.

Definition

Let G be a finite group and let x be an element of G . The cyclic group
generated by x , denoted ⟨x⟩, is the set of all values kx where k is a positive
integer.

Example

Let G = C4 ⊕ C6 and x = (2, 2). Then

⟨x⟩ = {(2, 2), (0, 4), (2, 0), (0, 2), (2, 4), (0, 0)}.
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Group Theory Background

Definition

Let G be a group and let H be a subset of G . We say H is a subgroup of G if H
forms a group under the same operation as G . We can denote this as H ≤ G .

Example

Let G = Z and H = 2Z (the set of even integers). Then H is a subgroup of G
since the even integers form a group under addition and H is a subset of G .
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Group Theory Background

Definition

Let G be a group and let H ≤ G be a subgroup of G . For all g ∈ G , the sets

g + H = {g + h : h ∈ H}

and
H + g = {h + g : h ∈ H}

are called the left cosets and right cosets of H. For finite abelian groups, the
left and right cosets are the same. We define
(g1 + H) + (g2 + H) = (g1 + g2) + H and the cosets form a group under this
operation.

Example

Consider the group C4 and its subgroup H = ⟨2⟩ = {0, 2}. The two cosets of H
are {0, 2} and {1, 3}.
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Group Theory Background

Definition

Let G be a finite abelian group and let H ≤ G be a subgroup of G . The
quotient group G modulo H denoted by G/H is the collection of all cosets of H.

G/H = {g + H | g ∈ G}.

Example

Let G = Z and H = 5Z. Then the cosets of H are

0 + 5Z = {· · · ,−10,−5, 0, 5, · · · }
1 + 5Z = {· · · ,−9,−4, 1, · · · }
2 + 5Z = {· · · ,−8,−3, 2, · · · }
3 + 5Z = {· · · ,−7,−2, 3, · · · }
4 + 5Z = {· · · ,−6,−1, 4, · · · }.

Recall that this quotient group Z/5Z is also called C5.
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Group Theory Background

Theorem (Fundamental Theorem of Finite Abelian Groups)

Let G be a finite abelian group. Then G can be expressed uniquely as

G ∼= Ca1 ⊕ Ca2 ⊕ · · · ⊕ Can ,

where a1 | a2 | · · · | an.
We say that n is the rank of the group.

We say that an is the exponent.

Example

Let G = C6 ⊕ C12 ⊕ C16. We can show

G ∼= C2 ⊕ C12 ⊕ C48,

where 2 | 12 | 48. The rank of G is 3 and the exponent of G is 48.
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Condition for Automorphic Equivalence

This leads us to our main theorem.

Theorem (A.-C.-G.-Kettinger, 2024)

In a finite abelian group G and x , y ∈ G , there exists an automorphism φ such
that φ(x) = y if and only if G/⟨x⟩ ∼= G/⟨y⟩.

It is significantly easier to compute quotient groups than check all possible
automorphisms φ.

We use this result to develop algorithms that can check whether two
elements are automorphically equivalent.

Example

Let G = C2 ⊕ C2. Let x = (0, 1) and y = (1, 1). Since G/⟨x⟩ ∼= G/⟨y⟩ ∼= C2,
there exists an automorphism φ with φ(x) = y .
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Automorphic Equivalence of Two Elements: Significance of Results

This result can also be combined with other results to produce consequences
that are not immediately obvious.

Theorem (A.-C.-G.-Kettinger, 2024)

If x and y are both of maximal order in a finite abelian group G , they are
automorphic images of each other.

Corollary (A.-C.-G.-Kettinger, 2024)

Given two elements x , y ∈ G of maximal order, G/⟨x⟩ ∼= G/⟨y⟩.
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Algorithms for Automorphic Equivalence

The quotient group G/⟨x⟩ can be computed by reducing a matrix to what
is called Smith Normal Form; the time complexity of reducing a matrix to
SNF (assuming multiplication of integers can be done in constant time) is
the same as the time complexity of matrix multiplication of matrices with
rank equal to the rank of G .

The Strassen algorithm, the most practical matrix multiplication
algorithm, can do this in O(n2.8074), where n is the rank of G .

Key Consequence

Therefore, to check whether there exists an automorphism φ that maps x to y ,
where x , y ∈ G , we can instead compute G/⟨x⟩ and G/⟨y⟩, which can be done
in O(n2.8074).
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Algorithms for Automorphic Equivalence

We also present another algorithm that is typically significantly faster than the
previous algorithm.

By using fast prime factorization algorithms to factorize an (the exponent),
we can represent a finite abelian group G as the direct product of several
p-subgroups.

A modified Smith Normal Form algorithm can compute G/⟨x⟩ if G is a
p-group in O(n log n), where n is the rank of G .

Key Consequence

We can find our quotient group over each p-group component of G and x and
combine them to get G/⟨x⟩. There are at most log2(an) prime factors of an
(the exponent), so there are at most log2(an) p-group components. The overall
complexity is O(n log n log an).

The algorithm is most practical when an ≤ 1020.
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Algorithms for Automorphic Equivalence

We can graph the number of operations (up to a small constant factor) it takes
for the normal Smith Normal Form algorithm to run versus our modified one.
For groups of larger rank, our algorithm shows a significant improvement.
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Computing Automorphic Orbits

Definition

Consider a finite abelian group G . Define an orbit O of G to be a nonempty
subset of elements from G such that for each x ∈ O and y ∈ G , there exists an
automorphism mapping x to y if and only if y ∈ O.

The orbits of a group partition the group.

The structure of these orbits has been studied, and there are algorithms
counting the number of orbits, but computing the elements in each orbit
and their sizes efficiently has not been done.

Key Consequence

We have developed an algorithm that computes the orbits of G in
O(

√
|G |n log n) time, where n is the rank of G .
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End of Presentation

THANK YOU!
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